LIMITING REACTANT (LIMITING REAGENT) PRACTICE (\#5) From Bauck and ChemTeam

1) Potassium reacts with iodine to form potassium iodide.
6.70 mol of potassium and 3.20 mol of iodine are available in lab.
a) Write the balanced equation.
b) Calculate and identify the limiting reactant.
c) Calculate and identify the excess reactant.
d) How many moles of product form?
e) How many moles of excess reactant are left over?
2) 8.00 moles of oxygen is available to react with 7.00 moles of phosphorus. Diphosphorus pentoxide is formed.
a) Write the balanced equation.
b) Calculate and identify the limiting reagent.
c) Calculate and identify the excess reagent.
d) How many moles of product form?
e) How many moles of excess reagent are left over?
3) Hydrogen reacts with carbon to form methane gas $\left(\mathrm{CH}_{4}\right)$.
7.0 moles of hydrogen and 5.0 moles of carbon are used in the reaction.
a) Write the balanced equation.
b) Calculate and identify the limiting reactant.
c) Calculate and identify the excess reactant.
d) How many moles of product form?
e) How many moles of excess reactant are left over?
4) In the incomplete combustion of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right), 0.789 \mathrm{~mol}$ of sucrose and 0.789 mol of oxygen are available to react.
a) Write the balanced equation.
b) Calculate and identify the limiting reagent.
c) Calculate and identify the excess reagent.
d) How many grams of products form? (2 separate answers)
e) How many grams of excess reagent are left over?

QUESTION 5 FOR CHEM I HONORS ONLY:
5) In the complete combustion of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right), 20.00 \mathrm{~g}$ of sucrose and 20.00 g of oxygen are available to react. (Calculate all answers in grams).
a) Write the balanced equation.
b) Calculate and identify the limiting reagent.
c) Calculate and identify the excess reagent.
d) How many grams of carbon dioxide form?
e) How many grams of excess reagent are left over?

